
Package: lazybar (via r-universe)
August 21, 2024

Type Package

Title Progress Bar with Remaining Time Forecast Method

Version 0.1.0.9000

Description A simple progress bar showing estimated remaining time.
Multiple forecast methods and user defined forecast method for
the remaining time are supported.

License GPL-3

Encoding UTF-8

LazyData true

URL https://pkg.yangzhuoranyang.com/lazybar/,

https://github.com/FinYang/lazybar/

BugReports https://github.com/FinYang/lazybar/issues/

Imports R6

Suggests forecast

RoxygenNote 7.1.0

Language en-AU

Repository https://finyang.r-universe.dev

RemoteUrl https://github.com/finyang/lazybar

RemoteRef HEAD

RemoteSha 86d70ffd1e7875ba375184394c15c2db05d15c90

Contents

lazyProgressBar . 2

Index 5

1

https://pkg.yangzhuoranyang.com/lazybar/
https://github.com/FinYang/lazybar/
https://github.com/FinYang/lazybar/issues/

2 lazyProgressBar

lazyProgressBar Progress bar with customisable estimated remaining time

Description

Display a progress bar displaying the estimated time. The purpose of having various estimation
methods is to provide a more accurate estimation when the run time between ticks is assumed to be
different, e.g., online estimation, time series cross validation, expanding window approach, etc.

Usage

lazyProgressBar(n, method = "average", fn = NULL, ...)

Arguments

n Integer. Total number of ticks
method Character. The embedded forecasting method of remaining time: average (de-

fault), drift, naive, or snaive. Ignored if fn is not NULL.
average (default) Average method. The run time between future ticks are as-

sumed to be the average run time of the past ticks. This is the most common
estimation method for remaining time.

drift Drift method. The run time between future ticks are assumed to increase
(decrease), and the level changed is set to be the average change of the
run time of the past ticks. This is to assume the run time between ticks is
linearly increasing or decreasing.

naive Naive method. The run time between future ticks are assumed to be the
run time between the last two ticks,

snaive Seasonal naive method. If this method is chosen, an argument of s
needs to be supplied in the The run time between future ticks is set to
be the run time s times before. By default s is set to be 1/10 of the total
number of ticks.

fn Function. User defined function to estimate the remaining time. The function
should predict the remaining time using the arguments and return a scalar. It
should have at least three arguments in the order of dtime, i, and n, which
represent the status of the progress bar at the current tick:
dtime A numeric vector of the run time between past ticks.
i The number of the current tick.
n The number of total ticks.

... Other arguments to pass to estimation method. The arguments need to be named.

Details

Four simple forecasting methods are available for the estimation of the remaining time: Average
method (default), Drift method, Naive method and Seasonal naive method. For the summary of the
simple methods, see Chapter 3 of References. User can also supply their customised estimation
method as a function. See Arguments and Examples.

lazyProgressBar 3

Value

An R6 object with methods tick() and print().

Author(s)

Yangzhuoran Fin Yang

References

Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd edition,
OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on 24/04/2020.

Examples

pb <- lazyProgressBar(4)
pb$tick()
pb$tick()
pb$tick()
pb$tick()

With linearly increasing run time
pb <- lazyProgressBar(4, method = "drift")
for(i in 1:4){

Sys.sleep(i * 0.2)
pb$tick()$print()

}

With user defined forecast function
The forecast function itself will
require certain computational power
forecast_fn <- function(dtime, i, n, s = 10){

When the number of ticks is smaller than s
Estimate the future run time
as the average of the past
if(i<s){
eta <- mean(dtime)*(n-i)

}

When the number of ticks is larger than s
Fit an arima model every s ticks
using forecast package
if(i>=s){

if(i %% s ==0){
model <- forecast::auto.arima(dtime)

}
runtime <- forecast::forecast(model, h=n-i)$mean
if(i %% s !=0){

runtime <- runtime[-seq_len(i %% s)]
}
eta <- sum(runtime)

}
return(eta)

4 lazyProgressBar

}

pb <- lazyProgressBar(10, fn = forecast_fn, s=3)
for(i in 1:10){

Sys.sleep(i * 0.2)
pb$tick()$print()

}

Index

lazyProgressBar, 2

5

	lazyProgressBar
	Index

